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Raylelgh distance m the ax,al distance from aradlatmg aperture to a point at which the path dif-

ference between the amal rayand an edge rayish/4(Flgure 1). To a good approximation, R, = D2/2k.

Raylelgh also calculated the efficiency of power transmission from a cmcular lens to a cmcular

focal area, obtammg the well-known formula

n = 1- [JO(U)]2 - ~,(u)l 2

where

~ . ~r/F~

r = radms at focus

F = f/D

f = focal lengti

D = lens diameter

h . wavelength.

Assume that the dmrneter of the focal area is equal to the dmrneter of the lens (a condition dis-

cussed by Rayleigh), then

R
rD 2 r7r

u=m=*T=T

where q M the focal length normalized to the Raylelgh distance. or q = f/Rr.
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Figure 1. Rayleigh Distance Determmed by Proximity Phase Error
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Now r = D/2 corresponds to power transmission from m antenna to a matched load of the same

shape and area, representing “parallel beam” transmission. The normalized range (q) is a dominant

parameter in this situation.

Consider the case where the recelvmg lm.d captures the Amy disk, Then, the first zero of the

focal pattern J1(u)/u is u = 1.227r giving q = 0.82, and the effic~ency of transmission is 84 percent,

an often-quoted result.

If the aperture had been square, the focal spot would have been square and the focal pattern (of

sin UIU type) has null lines at u = ~ in the principal planes. Then u = r and q = 1; that is, at the

Rayleigh distance, the receiving square area equal to the transmitting square area captures the focal

lobe. This case is canonical and is illustrated m Figure 2 with the corresponding case for the cir-

cular a~erture,
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Figure 2. Transmission Along the Rayleigh Range

with Square and Circular Beams

The ranges. for main-lobe capture with the illumination tapered are shown in Figure .3. The con-

cept of main-lobe capture is heuristic rather than optimum and has the merit of mmplicity.

For illumination tapers of the circular transmitting aperture of the mve rte d parabola family

F(P) = (1 - P2)P

the transmission efficiency is

where the Lambda function is defined by

AP(U) = P’ Jp(u)/(u/2)p

and the prime denotes differentiation. This formula reduces to Rayleighls for p = O.
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Figure 3. Effective Range Dependence on Illumination Taper at Transmitt~r
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The curves of Figure 4 g~ve the effm~ency as a functmn of u for p = O, 1, 2, and can be used for

transnmsslon between equal or unequal apertures. For equal apertures, the curves relate the eff~.

ciency to the normahzed range.

For p = 2 and q = 0.49 (approximately one-half the Raylelgh dmtance), q = 99.66 percent wh~ch

represents a transmlasmn loss of 0.015 db. The modern beam wave guide using Gauss ~an-type 11-

lummatmn has a permdm spacing of the order’ of q = 0.5 wmth tbeoret~cal 10SS per’ Iteratmn of

0.002 db.
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Fwure 4. Transmission Efficiency as a Functmn of

System Parameters and lllum&tion Taper

Tran6m~s s,on between unequal apertures requmes the larger aperture to be focused on the

smaller (Figure 5). The focal length or range m then less than the RayIelgh distance. For a f~xed -

aperture ratio, the range also depends on the filuminatlon function of the transmitter.

The Raylelgb dmtance (D2/2 A.) also enters mto the analytical functions of Fresnel diffraction. For

the square aperture, Fre snel integrals or Lornmel functions of order 1/2, 3/2 apply. For the circular

aperture with equlphase umform Illummation, a transverse power pattern at range R IS given by

P,..”,”) - [U,(w,u)l 2+ p+ “)]2

where Un(w, u) IS the Lommel function of two varcahles (w = n/q and u = nd/qD where q = R/Rr).

Thus, the field descr,ptmn depends expllc~tly only on the ratio of the apertures and the range length

normalized to the Raylelgh distance. If the transmitter IS focused, Its focal length becomes an addl-

tmnal varmble that can also be normalized to the Raylelgh distance.
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Figure 5. Unequal Square Apertures (Transmitter Focused Within Rayleigh Distance)

The axial power densities of square or circular apertures (Figure 6) can he expressed in terms

of the normalized range. For uniform illumination, these are, respective y:

P~ = 4 Pa [c’(,/m) + s’(1/@)l 2

P = 4 Pa sin’ (r/4q)
c

where

Pa = the aperture power density

q = R/R
r

C, S = Fresnel integrals.

Similar formulas can be obtained for tapered and focused illuminations.
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Figure 6. Axial Power Densities
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